THE TULLSTORP STREAM PROJECT
"From source to estuary – the unique project"

Project description

The Tullstorp stream 2.0
Pilot project & development och methodology

2020 – 2023

1 The Tullstorp stream 2.0 Pilot project and development of methodology are part of the overall Project Tullstorp stream 2.0, which in turn is part of the Tullstorp stream project. Tullstorpsån 2.0 and the sub-project Tullstorpsån 2.0 Pilot project and development of methodology have their own project manager, budget, implementation, follow-up and final reporting.
CONTACT

Project owner

Tullstorpsån Ekonomisk förening
c/o Jordberga Gård AB
231 99 Klagstorp
VAT-nr SE 769619914501
Org.nr 769619-9145
Bankgiro 397-0936 Bank SEB
Innehar F-skattsedel

Contact persons

Christoffer Bonthron
Project manager
+46 70 868 40 19
bonthronchristoffer@gmail.com

Otto von Arnold
Chairman
+46 708 126425
otto@tullstorpsan.se

Claes-Eric Claesson
Economy
+ 46 733 880003
Claes-Eric@claessons.one

Project area

Tullstorp stream
Water
MS_CD: WA21240924
Category: Water
VISS EU_CD 614633-134828

Nybro stream
Water
Category: Water
VISS EU_CD 614658-138072

Catchment area:
Kustområde- SE89090

Skåne – Baltic Sea

Partners

Tullstorp stream project
Jordberga Gård
Högestad & Christinehof

WWF
Region Skåne
Länsstyrelsen i Skåne

This report has been prepared through funding with LOVA grants, thus the report is a public document whose content is allowed to be passed on to other stakeholders.

2019-11-27
Content

1. INTRODUCTION .. 4
 1.1. Background – Problem and challenges .. 4
 1.2. About the initiative / project Multifunctional wetlands and Recirculating irrigation 5
 1.3. Ongoing pre study .. 7

2. Tullstorp stream 2.0 Pilot projects and Method Development ... 7
 2.1. Summary description ... 7
 2.2. Environmental quality objectives concerned .. 7
 2.3. Compliance with the environmental quality standard for the water body concerned 8

3. PURPOSE – Tullstorp stream 2.0 Pilot project and Method development .. 8

4. OBJECTIVES – Tullstorp stream 2.0 Pilot project and Method development 8
 4.1. Phase 1 - Pilot project ... 9
 4.2. Phase 2 - Method development .. 9

5. IMPLEMENTATION – Tullstorp stream 2.0 Pilot project and Method development 10
 5.1. Phase 1 - Pilot project ... 10
 5.2. Phase 2 - Method development .. 10

6. BUDGET – Tullstorp stream 2.0 Pilot project and Method .. 12

7. TIMETABLE – Tullstorp stream 2.0 Pilot project and Method development 13

8. EXPECTED RESULTS AND EFFECTS – Tullstorp stream 2.0 Pilot project and Method development 14
 8.1. Expected result of the action .. 14
 8.2. Action effect of the sub-project .. 14
 8.3. Expected environmental impact of the measure .. 14
 8.4. Methods for measuring and calculating environmental effects .. 14
 8.5. Expected Social benefit of the measure .. 15
 8.6. Dissemination and presentation of results and conclusions .. 15

9. FOLLOW-UP AND EVALUATION – Tullstorp stream 2.0 Pilot project and Method development 15

10. OTHER – Tullstorp stream 2.0 Pilot project and Method development .. 15

11. ANNEX ... 16
1. INTRODUCTION

1.1. Background – Problem and challenges

Wetter and drier
The recent extreme weather, with the wet summer and autumn of 2017 and the dry summer of 2018 in fresh memory, presents Swedish agriculture with new challenges. Climate change means that Swedish agriculture has to rethink and think again. Large areas could not be sown in autumn 2017 when the fields were too wet to drive out machines. During the dry crisis summer of 2018, the possibility of using water stored in wetlands for irrigation was discussed, but this was not possible as existing wetlands (mostly designed with a focus on the ecological perspective) are shallow and dried entirely or partly in parallel with the fact that the legality of abstraction of water was unclear. Furthermore, some farmers who had water rods for groundwater abstraction realised that their water source was not sufficient, either because the groundwater supply was too small or because conditional groundwater abstraction was not sufficient to cover the irrigation needs.

More cultivation in northern Europe, increased need for irrigation and conflicts over water needs
EU Environment Agency EEA has issued a new report assessing how food production and agriculture will be affected by climate change. The report reiterates that cultivation in parts of southern Europe can be made more difficult. In some cases, so much that land is abandoned and areas are depopulated. And the slightly warmer climate can instead provide benefits for cultivation in Northern Europe. For Sweden, animal husbandry can benefit from an extended growing season and increased harvests. As a joker in the game for all Europe’s countries, there is extreme weather with heat waves, but also floods and hail, which can cause major crop damage. Drought will increase the need for irrigation and it will cause conflicts as a result of the need for water in other areas.

Overall grip on the water and smarter use
Sydvatten recently issued a report where it is stated that there is a very widespread understanding that we need to achieve change at several levels, in many areas and that it must be done urgently.

“It is becoming increasingly clear that there is no overall grip on the water issue, while the situation is rapidly becoming more and more acute. Climate change and extreme weather situations with drought and rainfall are becoming increasingly common, making the water resource permanently more vulnerable. Ignorance and conflicts of interest and goals can create irrational solutions."

“Through changing, more efficient and smarter use of water, the freshwater resource can last longer. Many measures within the municipality, agriculture and industry are relatively easy to implement, but are hindered by low awareness, the issue is undeveloped and the lack of insight into the value of water. Other measures require new forms of financing, a clearer priority in water use and a modernization of water legislation. Ecosystems must be a part of the whole and the risks of pollution are taken into account. Collaboration, partly across the value chain, partly in a river basin, and partly around issues such as irrigation, drainage and municipal water and gas activities need to grow and develop.”

2 Climate change adaptation in the agriculture sector in Europe, EEA report (European Environment Agency), No 04/2019
3 Klimatsäkert vatten, Sydvatten juni 2019
1.2. About the initiative / project Multifunctional wetlands and Recirculating irrigation
Using the above problem picture as background, the Tullstorp stream Project Board in spring 2019 decided to give the Project Manager the task of starting up, financing and running the overall project Tullstorp stream 2.0, and initially Tullstorp stream 2.0 - pre study Multifunctional wetlands and Recirculating irrigation. Financing was secured with WWF, LOVA and finally Region Skåne. In order to create a greater weight behind the project Högestad and Christinehof was connected which has a long history and knowledge on environmental and water conservation projects and Naturvårdsingenjörerna AB participated in the project with technical documentation.

Overall project purpose
Historically executed and ongoing water projects (such as the Tullstorp stream project) have been created, designed, operated and followed up from a, largely, strictly ecological perspective with the goal of generating environmental benefits. The pre study is a first step in a larger project on multifunctional wetlands and recirculating irrigation. The overall purpose of the entire project is to create the conditions for future water projects to be run in order to achieve both ecological benefit for the environment and economic benefit for the landowner as well as community benefit. This will be done by mapping, investigating and strengthening the possibilities of planting multifunctional wetlands and recirculating irrigation. This will increase the motivation of landowners to create wetlands with multiple functions and systems for recirculating irrigation.

Overall project plan
The project is based on a holistic view of a water body / watercourse - by studying the entire river basin around a river, a stream, or a ditch body - in this case the Tullstorp stream. The project consists of 4 phases in addition to the pre study (see figure below) and will be run by Tullstorp stream’s economic association, together with a number of partners, as a further development of the successful Tullstorp stream project and the Tullstorp stream method. Most of the project will concentrate on Tullstorp stream and its river basin, while some parts are made at Högestad & Christinehof.
Pre study
Make it possible for the project idea to go from idea to reality.

Phase 1 - Pilot project
Construction of reference systems for multifunctional wetlands and recirculating irrigation in the catchment area of Tullstorp stream and at Högestad & Christinehof. The pilot project includes both newly constructed wetlands but also the development of existing wetlands as well as the construction of systems for recirculating irrigation.

Phase 2 - Method development
Development of a working method / process for creating a holistic view and enabling a holistic approach to a body of water / watercourses can be made. A guide / description for the design and construction of systems for multifunctional wetlands and recirculating irrigation is developed. The final result is compiled in a manual.

Phase 3 - Full scale test
The entire watercourse of the Tullstorp stream and its catchment areas are analyzed from a holistic perspective on water management. Existing measures (such as wetlands, two-stage ditches, overflow beds, etc.) are supplemented by the construction of multifunctional wetlands and recirculating irrigation.

Phase 4 - Evaluation
Overall analysis of how the measures implemented within the project have resulted in both ecological benefit for the environment and economic benefit for the landowner as well as social benefit. What trends and opportunities can be demonstrated? What conclusions can be drawn? The analysis should also point out if there are areas where continued need for in-depth analyzes and any research is needed.

The ambition of the entire project - Expected results
The impact of the project is estimated to be:
- Reduced nutrient supply to the Baltic Sea.
- Flooding, erosion, cleaning needs to a lesser extent.
- Increased biodiversity in and around the waterways and wetlands.
- Improved cultivation and higher yield on the land.
- Good ecological status in watercourses and coastal waters.

We also believe that this project will lead to more wetland projects being implemented as there is also a financial benefit to the projects and this in turn will lead to:
- Swedish agriculture gains better resistance to extreme periods of drought and drought.
- The water-holding, water-regulating and groundwater-forming opportunities in the landscape are being strengthened.
- More surface water is used for irrigation and the plant nutrients that are in circulation are reused by recycling nutrients and returning them to growing crops to reduce emissions to the Baltic Sea.
- The social benefits of wetland projects are strengthened by linking wetlands projects (which form a puzzle piece) with the County Administrative Board’s action plan for regional green infrastructure (large puzzle).
- The regional environmental objectives, national environmental quality objectives and the EU Water Directive are achieved on a broader front.
Swedish agriculture produces more food and also in an environmental way.
A basis is created for discussion about new design of support for farmers linked to multifunctional wetlands and recirculating irrigation as a supplement to existing support for the planting and management of wetlands.

1.3. Ongoing pre study
The work with the pre study has been ongoing since July 2019 and is expected to be completed in beginning of 2020. Within the framework of the pre study, the project idea will be taken from idea to reality. This is done by anchoring the project plan, the pre study and the future project with several co-financiers and landowners who are interested in building multifunctional Wetlands and recirculating Irrigation. The following is included in the pre study.

At the final report it is presented:
- Project plan and budget plan for future work (next phases), ie. This document.
- Final report with the following content:
 - Proposals for areas within the catchment area of the Tullstorp stream and within Högestad & Christinehof’s fields with the right conditions for entering phase 1 - Pilot project.
 - Discussion and, if possible, definition of multifunctional wetland, recirculating irrigation, adjustable drainage, irrigation technology (linked to the best possible technology), conservation considerations and society as the start of phase 2 - Method development.
 - Description of the process for drawing up a water budget for the Tullstorp stream as the start of phase 2 - Method development.

2. Tullstorp stream 2.0 Pilot projects and Method Development

2.1. Summary description

Phase 1 - Pilot project
Construction of reference systems for multifunctional wetlands and recirculating irrigation.
- 12 have multifunctional wetlands, for details see appendix
- 200 ha irrigation system
- 200 ha drainage system, adjustable drainage should be used where practicable

Phase 2 - Method development
Development of a working method / process for creating a holistic view and enabling a holistic approach to a body of water / watercourses can be made. A guide / description for the design and construction of systems for multifunctional wetlands and recirculating irrigation is developed.

2.2. Environmental quality objectives concerned
- Good quality groundwater
- No eutrophication
- Living lakes and streams
- Vibrant wetlands
- Sea in balance and living coast
- A rich plant and animal life
2.3. Compliance with the environmental quality standard for the water body concerned

Water
- The Nybro river will achieve good ecological status in 2027, today the status is moderate.
- The Tullstorp stream is to achieve good ecological status in 2027, today the status is moderate.
- The multifunctional wetlands and recirculating irrigation purify the water from nutrients (nitrogen and phosphorus) and environmental toxins. The nutrient leakage to the watercourses is expected to decrease and the concentration of environmental toxins in the water is expected to decrease as this is bound to growth in low concentrations.

Groundwater occurrences
In general, all groundwater bodies should achieve good chemical groundwater status by 2021 and good quantitative status by 2021.
- Sv Skåne's limestones (down under the Tullstorp stream) today have good chemical groundwater status and good quantitative status.
- Krageholm (down under Högesta and Christinehof) today has a good chemical groundwater status and good quantitative status.
- The multifunctional wetlands are considered to favor groundwater formation as they can store more water than traditional wetlands and then also "produce" more groundwater.
- The multifunctional wetlands and recirculating irrigation purify the water from nutrients (nitrogen and phosphorus) and environmental toxins. Nutrients to the groundwater is estimated to decrease and the concentration of pollutants in basic water expected to decrease as this bound in vegetation in low concentrations.

3. PURPOSE – Tullstorp stream 2.0 Pilot project and Method development
The purpose of Phase 1 - Pilot et is to establish reference systems for multifunctional wetlands and recirculating irrigation that will serve as sources of inspiration / display items for others who want to do water projects and to build experience for Phase 3 - Full-scale test.

The purpose of Phase 2 - Development is to create conditions for a holistic approach and enable the en holistic spirit process / methodology around a body of water / streams can be done in the future water projects.

4. OBJECTIVES – Tullstorp stream 2.0 Pilot project and Method development
In the final report, a Project plan and Budget plan are presented for the continued work in the project (next phases), presented in a separate document.
4.1. Phase 1 - Pilot project
Design and construction of 2 reference systems for multifunctional wetlands and recirculating irrigation in the catchment area of Tullstorpsån and at Högestad & Christinehof.

- 12 ha with multifunctional wetlands, for details see appendix
- 200 ha irrigation system
- 200 have systems for drainage, controlled drainage should be used where it is practically possible

The above-mentioned part of the system shall, where possible, be designed and / or supplemented within the framework of the pilot project with equipment / technology that makes it possible to evaluate / follow up the benefit / effect of the systems, for example:

Groundwater
- recharge
- water level
- quality

Recycling of nutrients
- nitrogen
- phosphorus

Pesticides Leak

Water uptake in crops

Water content in soil

The County Administrative Board may provide input on the design and layout of evaluation systems.

4.2. Phase 2 - Method development

- A guide / description for the design and construction of systems for multifunctional wetlands and recirculating irrigation is developed.
- Development of working method / process to create a holistic view and enable a holistic approach to a body of water / watercourses to be made.
- The final result is compiled in a manual.
5. IMPLEMENTATION – Tullstorp stream 2.0 Pilot project and Method development

5.1. Phase 1 - Pilot project
Design and construction of reference systems for multifunctional wetlands and recirculating irrigation as shown below:

<table>
<thead>
<tr>
<th>Description</th>
<th>Pilot project 1 Tullstorp stream - Jordberga Sugar mill ponds</th>
<th>Pilot project 2 Högesta Christinehof - Högestad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renovation existing treatment ponds and cooling ponds (9 pieces) to a multifunctional wetland system</td>
<td>Construction of a multifunctional wetland system</td>
<td></td>
</tr>
<tr>
<td>Wetland area, ha</td>
<td>To be determined within the project</td>
<td>To be determined within the project</td>
</tr>
<tr>
<td>Water surface, ha</td>
<td>6.5</td>
<td>5.6</td>
</tr>
<tr>
<td>Average water depth, m</td>
<td>2-2.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Volumes, m³</td>
<td>97 000</td>
<td>87 000</td>
</tr>
<tr>
<td>Water resources (drainage, storm water, river water)</td>
<td>drainage water, storm water and water</td>
<td>drainage water</td>
</tr>
<tr>
<td>Basin, ha</td>
<td>To be determined within the project</td>
<td>250 of which 150 arable land</td>
</tr>
<tr>
<td>Irrigation system</td>
<td>To be determined within the project</td>
<td>To be determined within the project</td>
</tr>
<tr>
<td>Ha irrigated arable land</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Drainage</td>
<td>To be determined within the project</td>
<td>To be determined within the project</td>
</tr>
<tr>
<td>Ha drained arable land</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Other</td>
<td>The project includes a landscaping of the area - restoring to the industry and creating a beautiful environment</td>
<td>To get to a wetland that becomes natural in the landscape, obtain biological values, work for nutrient purification and at the same time get a good volume of water so it is proposed to make a plant on two levels.</td>
</tr>
</tbody>
</table>

For planning, sub-consultants will be used and for construction contractors.

5.2. Phase 2 - Method development
A guide / description for the design and construction of systems for multifunctional wetlands and recirculating irrigation is developed.

Focus on technical aspects
- Planning and project
- Design
- Operation and maintenance
Development of working method / process to create a holistic view and enable a holistic approach to a body of water / watercourses to be made.

Focus on **process-related** aspects

- regulations affecting wetland construction and the use of water in recirculating systems
- methodology for establishing a “water budget” for the water body / water body
- links and collaboration with other processes / plans involving the water body / watercourse
- environmental economic calculation or "production" of ecosystem services linked to monetary valuation - ecological benefit to the environment
- socio-economic calculation - "economic" benefit to society
- business-economic-calculation - economic benefit for the landowner

The work is carried out as literature studies, workshops, interviews and with the help of sub-consultants. The final result is compiled in a manual.
6. BUDGET – Tullstorp stream 2.0 Pilot project and Method

Totalt projektmetod

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Projektledning och projektadministration Pilotprojekt</td>
<td>600 000</td>
<td>150 000</td>
<td>150 000</td>
<td>150 000</td>
<td>150 000</td>
</tr>
<tr>
<td>Övrig administration</td>
<td>300 000</td>
<td>75 000</td>
<td>75 000</td>
<td>75 000</td>
<td>75 000</td>
</tr>
<tr>
<td>TOTALT Projektledning och administration</td>
<td>900 000</td>
<td>225 000</td>
<td>225 000</td>
<td>225 000</td>
<td>225 000</td>
</tr>
</tbody>
</table>

Pilotprojekt

Multifunktionell våtmark o recirkulerande bevattning 2 Jörnborgs och Sockerbruksdammar – Tullstorpsån

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Analys av hur tillgodosättning från vattnesystemet påverkar Tullstorpsån</td>
<td>50 000</td>
<td>50 000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multifunktionell våtmarkssystem i Sockerbruksdammansövergång från Naturvårdsingenjörerna</td>
<td>5 800 000</td>
<td>1 800 000</td>
<td>1 800 000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anläggning för att flyta dagvatten</td>
<td>200 000</td>
<td></td>
<td>100 000</td>
<td>100 000</td>
<td></td>
</tr>
<tr>
<td>Ansökan om bevattningstillsättning/stolpe</td>
<td>100 000</td>
<td>100 000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projektiering bevattningssystem, pumpar och ledningsrätt</td>
<td>250 000</td>
<td>250 000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anläggning bevattningssystem, pumpar och ledningsrätt</td>
<td>2 500 000</td>
<td>1 250 000</td>
<td>1 250 000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projektiering system för dränering (bäckklockning och reglerbar dränering)</td>
<td>250 000</td>
<td>250 000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anläggning system för dränering (bäckklockning och reglerbar dränering)</td>
<td>2 500 000</td>
<td>1 250 000</td>
<td>1 250 000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utvärderingshand som gör det möjligt att utvärdera nyttan/bildefsten av systemen - multifunktionell våtmark och recirkulerad bevattning. Installeras i respektive system vid anläggning och på lämpliga platser längs Tullstorpsån</td>
<td>400 000</td>
<td>100 000</td>
<td>100 000</td>
<td>100 000</td>
<td>100 000</td>
</tr>
<tr>
<td>TOTALT SYSTEM 1</td>
<td>13 550 000</td>
<td>3 150 000</td>
<td>5 350 000</td>
<td>3 200 000</td>
<td>1 850 000</td>
</tr>
</tbody>
</table>

Multifunktionell våtmark o recirkulerande bevattning 2 Högestad – Jorberga

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Multifunktionell våtmarkssystem på Högestad enligt beskrivning från Naturvårdsingenjörerna</td>
<td>3 665 000</td>
<td>1 832 500</td>
<td>1 832 500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ansökan om bevattningstillsättning/stolpe</td>
<td>200 000</td>
<td>100 000</td>
<td>100 000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projektiering bevattningssystem, pumpar och ledningsrätt</td>
<td>200 000</td>
<td>100 000</td>
<td>100 000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projektiering system för dränering (bäckklockning och reglerbar dränering)</td>
<td>250 000</td>
<td>250 000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anläggning system för dränering (bäckklockning och reglerbar dränering)</td>
<td>4 000 000</td>
<td>2 000 000</td>
<td>2 000 000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utvärderingshand som gör det möjligt att utvärdera nyttan/bildefsten av systemen - multifunktionell våtmark och recirkulerad bevattning. Installeras i respektive system vid anläggning och på lämpliga platser i närområdet</td>
<td>400 000</td>
<td>100 000</td>
<td>100 000</td>
<td>100 000</td>
<td>100 000</td>
</tr>
<tr>
<td>TOTALT SYSTEM 2</td>
<td>11 215 000</td>
<td>2 482 500</td>
<td>4 032 500</td>
<td>3 350 000</td>
<td>1 350 000</td>
</tr>
</tbody>
</table>

Totalt Pilotprojekt

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Totalt Metodutveckling</td>
<td>25 665 000</td>
<td>1 837 500</td>
<td>9 607 500</td>
<td>6 775 000</td>
<td>3 425 000</td>
</tr>
</tbody>
</table>

Totalt metodutveckling

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Projektiering och projektadministration Metodutveckling</td>
<td>450 000</td>
<td>150 000</td>
<td>150 000</td>
<td>150 000</td>
<td>150 000</td>
</tr>
<tr>
<td>Litteraturstudier</td>
<td>150 000</td>
<td>50 000</td>
<td>50 000</td>
<td>50 000</td>
<td>50 000</td>
</tr>
<tr>
<td>Workshops och intervjuer</td>
<td>225 000</td>
<td>75 000</td>
<td>75 000</td>
<td>75 000</td>
<td>75 000</td>
</tr>
<tr>
<td>Underhållskostnader</td>
<td>400 000</td>
<td>150 000</td>
<td>150 000</td>
<td>150 000</td>
<td>150 000</td>
</tr>
<tr>
<td>Övrig administration</td>
<td>75 000</td>
<td>25 000</td>
<td>25 000</td>
<td>25 000</td>
<td>25 000</td>
</tr>
<tr>
<td>Totalt Metodutveckling</td>
<td>1 350 000</td>
<td>450 000</td>
<td>450 000</td>
<td>450 000</td>
<td>0</td>
</tr>
</tbody>
</table>

Total

| | 27 015 000 | 6 307 500 | 10 057 500 | 7 225 000 | 3 425 000 |
7. TIMETABLE – Tullstorp stream 2.0 Pilot project and Method development

Tidplan – Pilotprojekt och Metodutveckling

- June 2020
- October 2023

- Tullstorpån 2.0 – Delprojekt Pilotprojekt
- Tullstorpån 2.0 – Delprojekt Metodutveckling

- 31 October 2020
 Deeredovising
- 31 October 2021
 Deeredovising
- 31 October 2022
 Deeredovising
- 31 October 2023
 Slutredovising

- 1 December 2022
 Ny LOVA ansökan fortsättning av delprojekt inom Tullstorpån 2.0
8. EXPECTED RESULTS AND EFFECTS – Tullstorp stream 2.0 Pilot project and Method development

8.1. Expected result of the action
Construction of reference systems for multifunctional wetlands and recirculating irrigation in the catchment area of Tullstorpsån and at Högestad & Christinehof.

Development of a handbook for the construction of multifunctional wetlands and recirculating irrigation as well as a comprehensive process / methodology regarding a water body / water feature in future water projects.

8.2. Action effect of the sub-project
For wetlands that are positioned and optimally designed for nutrient purification, the separation can amount to 1,000 kg N / ha and year and 50 kg P / ha. This project has several purposes of the multifunctional wetlands and can not be adopted constructed entirely optimal for nutrient reduction and therefore as e n appreciated severing the following be reasonable, 200 kg N / ha years and 5 kg P / ha and year. In total, approximately 12 hectares of multifunctional wetlands are planted and the nutritional treatment is estimated at 24 000 kg N / year and 60 kg P / year

Totalt N: 2 400 kg Totalt P: 60 kg

8.3. Expected environmental impact of the measure
The sub-project is expected to entail:

- Favorable groundwater formation
- Protection against drought
- Reduced flood risk
- Increased biodiversity
- Reduced eutrophication
- Reduced climate impact

8.4. Methods for measuring and calculating environmental effects
The Tullstorp stream project conducts water surveys, both flow proportional and with sampling, in accordance with the developed control program for water quality in the Tullstorpsån. This is done at the project’s own sampling station in the lower part of the project area to give an overall picture of the impact of various activities and the effect of measures. Investigations of water chemistry, silica, bottom fauna, water supply and transport are carried out annually for agrohydrological years. In addition, fish surveys (electric fishing) are conducted annually on 5-7 premises along the river.
Within the framework of the Pilot projects, part systems, where possible, should be designed and/or supplemented with equipment/technology that makes it possible to evaluate/follow up the benefit/effect of the systems.

The action effects of the recirculation irrigation will also be determined as part of the future phase 4 - Evaluation of the project.

8.5. Expected Social benefit of the measure

Competence enhancement among project participants, increased public awareness of water projects, increased public participation in water related issues, new or strengthened collaboration on water projects, establishment of innovative tools and processes, increased food supply from aquatic environments, increased recreational values, conservation of natural heritage and conservation for science and education. Climate adaptation of water systems to mitigate the consequences of periods of more intense rainfall and drought.

8.6. Dissemination and presentation of results and conclusions

The results will be disseminated on the project’s website and through information material, excursions, seminars and conferences, etc.

9. FOLLOW-UP AND EVALUATION – Tullstorp stream 2.0 Pilot project and Method development

Within the framework of the Pilot projects, part systems, where possible, should be designed and/or supplemented with equipment/technology that makes it possible to evaluate/follow up the benefit/effect of the systems.

The action effects of the recirculation irrigation will also be determined as part of the future phase 4 - Evaluation of the project. Future follow-up is dependent on funding. The result will be disseminated to others through the dissemination of the Tullstorp sowing method.

10. OTHER – Tullstorp stream 2.0 Pilot project and Method development

The two sub-projects are important in order to be able to continue the work started in the sub-project Tullstorpsån 2.0 - Pre-study. Since the entire project Tullstorpsån 2.0 comprises a series of stages/sub-project it is important that the timed text sub implemented so that the next phases can be carried out and finally the entire project linked together.
11. ANNEX

PM 1 – Tullstorp stream 2.0

Calculation of construction costs for wetlands / dam plants at Jordberga and Högestad

2019-11-13
Jordberga

Description

This project consists of existing ponds that were used for the former sugar mill that was located in Jordberga. This plant consists of 9 pcs. different dams that currently have quite different status. Some have a few decimeters of waste, some have a few meters of water and some have a lot of sediment in them. 7 of the ponds are completely square and two have a more natural design. Around the ponds there are also land areas that are not currently used or used for anything specific. The property is called Lilla Jordberga 4:20, Trelleborg municipality.

Overview map of the area. Farthest to the east is the Tullstorpsån river.
Technical overview

The 9 different ponds are slightly different in size and are in quite varying condition. The following table is an overview of size and condition that gives an idea of the current status.

<table>
<thead>
<tr>
<th>Pond number</th>
<th>Size in m²</th>
<th>Sediment, estimated volume m³</th>
<th>Remaining material from the sugar mill</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14,000</td>
<td>No sediment</td>
<td>Yes, scrap and plastic hoses</td>
<td>Slope slope 1: 1 to 1: 2</td>
</tr>
<tr>
<td>2</td>
<td>1,700</td>
<td>About 2,500</td>
<td>No</td>
<td>Slope slope 1: 1 to 1: 2</td>
</tr>
<tr>
<td>3</td>
<td>7,300</td>
<td>About 500</td>
<td>Yes, sheet metal, scrap and concrete</td>
<td>Slope slope 1: 1 to 1: 2</td>
</tr>
<tr>
<td>4</td>
<td>4,200</td>
<td>No sediment</td>
<td>Yes, scrap and concrete</td>
<td>Slope slope 1: 1 to 1: 2</td>
</tr>
<tr>
<td>5</td>
<td>2,300</td>
<td>About 4,000</td>
<td>Yes, both scrap and concrete</td>
<td>Slope slope 1: 1 to 1: 2</td>
</tr>
<tr>
<td>6</td>
<td>5,800</td>
<td>About 2,000</td>
<td>No</td>
<td>Slope slope 1: 1 to 1: 2</td>
</tr>
<tr>
<td>7</td>
<td>4,200</td>
<td>About 3,000</td>
<td>No</td>
<td>Slope slope 1: 1 to 1: 2</td>
</tr>
<tr>
<td>8</td>
<td>8,800</td>
<td>About 1,700</td>
<td>Yes, concrete inlet from the river and on to pond 9</td>
<td>Biologically interesting for both amphibians and birds</td>
</tr>
<tr>
<td>9</td>
<td>17,000</td>
<td>About 3,400</td>
<td>Yes, concrete outlet</td>
<td>Biologically interesting for both amphibians and birds</td>
</tr>
<tr>
<td>Totally</td>
<td>65,300</td>
<td>About 17,000</td>
<td>Biologically interesting for both amphibians and birds</td>
<td></td>
</tr>
</tbody>
</table>

Proposal for a multifunctional facility

Restoration of ponds 1 to 7

For all dams, you first need to remove all scrap, plastic, concrete, electrical materials, etc. Everything must be sorted and removed from the area. Then all the ponds should be emptied of sediment. This sediment can be laid out in the area to shape and restore after the industry. Laying out the masses within the area allows you to adapt the landscape image and create a beautiful environment that can also be used such as for example pasture. There are large volumes of sediment to be moved around. These volumes should not be a problem, as the area is large.

Since all the ridges are about 4-4.5 meters high and very steep, these should be lowered and the slope reversed. It is suggested that the embankments are lowered to about 2.5 - 3 meters in height and the slope is converted to a variation between 1: 3 to 1: 6. This means that the possible water volume will be about 2 - 2.5 meters average depth. Between the dams are made pits or pipes that allow the water to circulate throughout the system. This should be done so that the water goes from pond 1 to 9 and then possibly, surplus drain into the Tullstorp stream. If you want to keep a larger volume of water, you should not lower the embankments so much, but adjust to the desired volume of water.

Water supply can only be made by pumping because the ponds 1 to 7 are at an altitude. Pumping can be done from the Tullstorp stream and possibly from any drainage system that is
nearby. The water is pumped through electric pumps that are powered by solar cells or possibly regular mains power. This may be investigated in more detail. Withdrawal of water can only take place during periods of higher flows in the Tullstorp stream. This needs to be mapped to control how much water can be withdrawn and during wet periods.

Restoration of ponds 8 and 9

These ponds have a fairly good design. The embankment located between the ponds and the Tullstorp stream is very high and should be lowered to get a better landscape adjustment. Otherwise, the technical structures should be replaced when in poor condition. Remove the old inlet from the river because it does not perform any function. One possibility is to make an open stream as a transfer of water between ponds 7 and 8. This will create a varied and pleasant environment.

Possible water volumes for irrigation

To know how much water is available, an initial calculation of volumes has been made. In the ponds 1 to 7 all volume is removed except about 30 cm. In ponds 8 and 9, a maximum outlet of half a meter is proposed so as not to jeopardize the biological values.

<table>
<thead>
<tr>
<th>Pond</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30 000</td>
</tr>
<tr>
<td>2</td>
<td>4 000</td>
</tr>
<tr>
<td>3</td>
<td>15 000</td>
</tr>
<tr>
<td>4</td>
<td>8 000</td>
</tr>
<tr>
<td>5</td>
<td>5 000</td>
</tr>
<tr>
<td>6</td>
<td>13 000</td>
</tr>
<tr>
<td>7</td>
<td>8 000</td>
</tr>
<tr>
<td>8</td>
<td>6 000</td>
</tr>
<tr>
<td>9</td>
<td>10 000</td>
</tr>
<tr>
<td>Totally</td>
<td>Approximately 97 000 m³</td>
</tr>
</tbody>
</table>

Costs

<table>
<thead>
<tr>
<th>Type</th>
<th>Volume</th>
<th>Estimated cost excluding VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapping drainage system for water supply</td>
<td>1</td>
<td>50 000</td>
</tr>
<tr>
<td>Testing water activities, incl. design</td>
<td>1</td>
<td>600 000</td>
</tr>
<tr>
<td>Demolition of past operations</td>
<td>1</td>
<td>500 000</td>
</tr>
<tr>
<td>Sediment removal</td>
<td>17 000</td>
<td>850 000</td>
</tr>
<tr>
<td>Lowering of embankments</td>
<td>40 000</td>
<td>1 600 000</td>
</tr>
<tr>
<td>Inlets, regulations</td>
<td>1</td>
<td>800 000</td>
</tr>
<tr>
<td>Pumping station</td>
<td>1</td>
<td>600 000</td>
</tr>
<tr>
<td>Socket for irrigation</td>
<td>3</td>
<td>150 000</td>
</tr>
<tr>
<td>Electricity, solar cells</td>
<td>1</td>
<td>300 000</td>
</tr>
<tr>
<td>Project management, construction management, final inspection</td>
<td>1</td>
<td>200 000</td>
</tr>
<tr>
<td>Investigation of sediment quality</td>
<td>1</td>
<td>100 000</td>
</tr>
<tr>
<td>Investigation of biological values</td>
<td>1</td>
<td>50 000</td>
</tr>
<tr>
<td>Totally</td>
<td></td>
<td>About 5 800 000</td>
</tr>
</tbody>
</table>

There are no costs in this documentation for irrigation pumps, hydrants and sockets, irrigation machines, etc.
Högestad

Description
Högestad & Christinehofs Förvaltnings AB has pointed out an area where one would like to plant a wetland for irrigation. The irrigation should provide about 100 ha of arable land. At present it is divided into three evenly sized shifts where the plant sequence is cereal, whey and protein crops. In the future, 15 may be relevant for special crops. The property where the wetland is to be built is called Högestad 36: 1, Ystad municipality.

Overview Högestad. Brown dash shows delimitation for irrigated area. Red ring shows the location of the wetland.

Technical condition
Water intended to be used comes from a closed drainage system with a catchment area of about 250 ha, of which 150 ha is arable land. The drainage system is not a diving company and is wholly owned by Högestad & Christinehof Fideikommiss AB. The drainage system opens in Nybroån about 1.5 km from the planned wetland. Planned wetland is located in an area that is of national interest for the cultural environment.

Proposal for a multifunctional facility
To get to a wetland that becomes natural in the landscape, obtain biological values, work for nutrient purification and at the same time get a good volume of water so it is proposed to make a plant on two levels. To get to these water surfaces it is necessary to make two fairly large ponds with a maximum height of about 3.5 meters. These ponds are made with a slope of about 1:6 and the material is taken within the area to be water surface to increase the volume of water. The shaft volume is about 12,000 m³ needed for the embankments. To increase the volume, the soil of about 30 cm is laid off, which is laid out around the wetland on the arable land. Then some shafts are required for pipes, wells, electricity, etc.

The volume of water will be about 87,000 m³ and the size will be 3.1 + 2.5 = 5.6 ha of water surface. This means that the average depth will be about 1.5 meters.

Proposal sketch showing diversion of water (dashed line), embankments, water surfaces and placement.

Possible water volumes for irrigation

In order to cover the irrigation needs that exist, about 130,000 m³ is needed in the worst case (dry year). The calculations are based on this volume.

In this project, there are two parts that are important for managing the supply of irrigation. On the one hand, it is the volume that exists in the wetlands that can be used for irrigation and partly the water that flows into the irrigation period.

When calculating the annual runoff to the wetland it is approximately 880,000 m³ of water. The average flow rate (MQ) is 28 l/s and average low flow (MLQ) is 3 l/s. The irrigation period is June, July and August on the crop distribution that exists today. In some years, there may be irrigation in May and September as well. Assuming that the entire volume is to be withdrawn for three months evenly distributed over the period, the withdrawal will be approximately 1,500 m³ per day. Assuming that the inflow is 5 l/s (just above MLQ), the inflow is about 450 m³ per day. This means that about 1000 m³ of water is needed in addition
from the wetland to meet the irrigation needs. This means that about 90,000 m3 of storage volume is needed in the wetland. The flow in the culvert system has not been clarified and this can vary greatly between different river basins. The calculation made is in a normal case and the calculation is based on standard values.

With the proposal above, the water volume becomes about 57,000 m3 by dam, 12,000 m3 by taking the material to the dams in the area and about 18,000 m3 by paving off the soil. This means that the volume of water will be 87,000 m3. This means that you reach the volume of water required for a full donor during a dry year.

Costs

<table>
<thead>
<tr>
<th>Type</th>
<th>Volume</th>
<th>Estimated cost excluding VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testing water activities, incl. design</td>
<td>1</td>
<td>600 000</td>
</tr>
<tr>
<td>Diversion of pipe systems</td>
<td>1</td>
<td>300 000</td>
</tr>
<tr>
<td>Shaft dams</td>
<td>12 000</td>
<td>600 000</td>
</tr>
<tr>
<td>Demolition of food soil 30 cm on 6 ha</td>
<td>18 000</td>
<td>540 000</td>
</tr>
<tr>
<td>Other shaft</td>
<td>5 000</td>
<td>250 000</td>
</tr>
<tr>
<td>Pipelines, wells</td>
<td>300</td>
<td>600 000</td>
</tr>
<tr>
<td>Socket for irrigation</td>
<td>1</td>
<td>75 000</td>
</tr>
<tr>
<td>outlet Wells</td>
<td>2</td>
<td>200 000</td>
</tr>
<tr>
<td>electrical wiring</td>
<td>1</td>
<td>300 000</td>
</tr>
<tr>
<td>Project management, construction management, final inspection</td>
<td>1</td>
<td>200 000</td>
</tr>
<tr>
<td>Totally</td>
<td></td>
<td>About 3 665 000</td>
</tr>
</tbody>
</table>

There are no costs in this documentation for irrigation pumps, hydrants and sockets, irrigation machines, etc.